相关题目
14.求定积分j null xe-2xdx
解:
=
-
xe-2x +
e-2x
null
= -
(
+ 1)
13.求定积分j02
x - 1
dx
解:
= j01
x - 1
dx + j12
x - 1
dx
= j01 (1- x)dx + j12 (x - 1)dx
= 1-
+ 
x2
null - 1
= 1
12.求定积分j-12
.
解:
= j-12
.
d (11+ 5x)
= -
[(11+ 5x)-2 ]1-2
= -
(16-2 - 1) 51
= 512
2
11.求定积分j nullxedx 。
解:
= (ej)01 xdx = e . 
x2
null
e
=
10.求j-01
dx
解: j-01
dx = j-01
3x2 +
))|dx
= [x3 ]0-1 + [arctan x]0-1
=1+ 
9.计算j-+w
的值.
解: j-+w
= [arctan x]
null
= 
8.计算j01 e
dx .
解:先用换元法:令
= t ,则 x = t2 ,dx = 2tdt ,且
当x = 0 时, t = 0 ;当 x = 1 时, t = 1 .
换元后分部积分, j01 e
dx = 2j01 tet dt = 2j01 td(et )= 2([tet ]null - j01 et dt)
= 2(e - [et ] )null = 2[e - (e - 1)]= 2
3 6
7.求定积分j12
(1 +
)dx .
解: j12
(1 +
)dx = j12 (
+ x)dx
「 ( 3 ) ]2
= |
+
|
= +

的所有间断点是( )。