AI智能整理导入 AI智能整理导入
×
首页 题库中心 新能源汽车大赛题库 题目详情
CAE5C6F9815000016270133018EB1E98
新能源汽车大赛题库
1,000
单选题

46、下列数据特征提取方法中,常被用于对语音时序数据的特征提取的是()。

A
MFCC
B
BOW
C
TF-IDF
D
ARIMA

答案解析

正确答案:A

解析:

这道题目考察的是对语音时序数据特征提取方法的理解。我们来逐一分析选项,并深入理解MFCC(Mel频率倒谱系数)在语音处理中的重要性。

### 选项分析:

1. **A: MFCC**
- **解释**:MFCC是一种常用的特征提取方法,特别是在语音识别和处理领域。它通过模拟人耳对不同频率的敏感度,将音频信号转换为一组特征值。这些特征值能够有效地捕捉到语音信号的音色和音调变化。
- **应用**:MFCC通常用于语音识别、说话人识别等任务,因为它能够很好地表示语音的特征。

2. **B: BOW(Bag of Words)**
- **解释**:BOW是一种文本特征提取方法,主要用于自然语言处理。它将文本视为一个词袋,不考虑词语的顺序和语法结构,主要用于文档分类等任务。
- **应用**:不适用于语音时序数据。

3. **C: TF-IDF(Term Frequency-Inverse Document Frequency)**
- **解释**:TF-IDF也是一种文本特征提取方法,用于衡量一个词在文档中的重要性。它结合了词频和逆文档频率,常用于信息检索和文本挖掘。
- **应用**:同样不适用于语音时序数据。

4. **D: ARIMA(自回归积分滑动平均模型)**
- **解释**:ARIMA是一种时间序列分析方法,主要用于预测和建模时间序列数据。虽然它可以处理时序数据,但并不是专门用于特征提取的。
- **应用**:更适合于经济数据、气象数据等的预测,而不是直接用于语音特征提取。

### 正确答案:A: MFCC

### 深入理解MFCC:

想象一下,你在听一段音乐。不同的乐器发出的声音有不同的音色和频率。MFCC就像是一个“音色分析师”,它能够将这些声音分解成多个频率成分,并提取出最能代表这些声音特征的参数。

#### 生动例子:

- **比喻**:想象你在一个热闹的派对上,周围有很多人在说话。你想要听到某个人的声音。MFCC就像是一个“声音过滤器”,它帮助你从嘈杂的环境中提取出你想要的声音特征,让你更清晰地听到那个人说的话。

- **应用场景**:在语音助手(如Siri或Alexa)中,MFCC被用来识别用户的指令。它能够将用户的语音转换为机器可以理解的特征,从而进行相应的操作。

通过以上分析和例子,希望你能更好地理解MFCC在语音时序数据特征提取中的重要性,以及为什么它是这个题目的正确答案。
新能源汽车大赛题库

扫码进入小程序
随时随地练习

关闭
专为自学备考人员打造
试题通
自助导入本地题库
试题通
多种刷题考试模式
试题通
本地离线答题搜题
试题通
扫码考试方便快捷
试题通
海量试题每日更新
试题通
欢迎登录试题通
可以使用以下方式扫码登陆
试题通
使用APP登录
试题通
使用微信登录
xiaochengxu
联系电话:
400-660-3606
xiaochengxu